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A B S T R A C T  

We derive asymptotic properties for the heat kernel of elliptic cone (or 

Fuchs type) differential operators on compact manifolds with boundary. 

Applications include asymptotic fornmlas for the heat trace, counting 

function, spectral function, and zeta function of cone operators. 

1. I n t r o d u c t i o n  

We begin by discussing cone operators and their heat kernels. Let E be a 

Hermit ian vector bundle over a coral)act manifold X with (connected) boundary  

Y = OX,  on which there is a fixed boundary  defining function x and a fixed b- 

measure din. Here, a b-measm'e is a density of the form x - ~ x  a smooth  positive 

density on X.  A cone differential operator  is an operator  of the form A -- x - ' ~ P ,  

where P E D i f f , ( X ,  E)  is a "totally characteristic" (or b-) differential operator.  

Hence, A is a usual differential operator  of  order m o11 the interior of  X such 

tha t  in any collar decomposi t ion X ~ [0, ~).~ x Y near Y over which E ~ E I r ,  A 

takes the tbrm 

m 

i o (1.1) A = x - m  ~ A,,~_~:(x)(xD~) k, Dx = - ~, 

k=O 
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where Am-k(x)  is a differential operator of order m - k  on Y depending smoothly 

on x. The primary examples of cone differential operators are Dirac operators 

and Laplacians associated to a conic metric on X. 

Under natural ellipticity conditions on A E x-mDif f~(X,  E),  called "full" or 

"parameter" ellipticity, Gil [11] shows that the heat operator e -tA exists as an 

operator between weighted Sobolev spaces. Thus, for some c~ C R we have 

(1.2) e-tA: xC~-mL~(X, E) ---4 xC~Heb(X, E), for any e E No, 

where L~(X, E) denotes the sections of E that are square integrable with respect 

to din, and HI(X,  E) consists of those u C L~(X, E) such that Diffe(X, E)u C 
L2(X, E). Gil also attains the following trace expansion: As t --4 0, 

o o  oo  

(1.3) Tre -tA ~ E a k t ( k - n ) / ' ~  + E b k t k / m l o g t ,  where n = dimX. 
k=O k----0 

Trace expansion of cone operators has a long history stemming from Cheeger's 

paper [6] on the cone Laplacian, and has proceeded through many developments 

in analysis on conic manifolds; see, for instance, Callias [5], Cheeger [7], Chou 

[9], Briining-Seeley [3], Briining Lesch [2], Lesch [16], Koral' [14], and Mooers 

[24]. We note that Mooers achieves the expansion (1.3) for the cone Laplacian 

utilizing similar "blow-up" techniques as those featured in this paper. 

For our first key result, we generalize (1.3) by adding a differential factor and 

give formulas for certain coefficients in the expansion. 

THEOREM 1.1: Let B G x -~Di f f~ ' (X ,E) ,  where m' E No and fl E R with 
fl < m. Then Be -tA is trace class on x~ -mL~(X ,E)  for t > O, and as t --+ 0 we 

have 

(1.4) TrBe - ta  ~,, akt zk + ~__,{bk logt + ck}t (k-~)/m, 
k = 0  k = 0  

where zk = (k - m' - n) /m.  Moreover, if e = zk, then 

{ r -~)bf xRes(Bme ), if e ¢ No; 

( 1 . 5 )  a k  = ' 1'*+' 
~ f  xRes(BlogAA% ire ~ No. 

Here, F(z) is the Gamma function, Res( B A  e) and Res(B log AA e) are (Wodzicki) 

residue densities which are defined in (3.11) and are discussed in the latter part 
of Section 3.1, and finally, bf x denotes the regularized (or b-) integral over X 
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(see Section 3.2). If C = (k - / 3 ) / m ,  then 

r(-e)  - - ~  f~, O~{xkRes(BAe)}]x:o, if  ~ f[ No, 

(1.6) bk = (g 1)e f~r O:~{xkRes(BlogddC)}lx=o, ifC E No 

Lastly, if  ~ = O, then the constant te rm of (1.4) is 

15 
(1.7) m ~ x R e S ( B  log A) + Reso{r(z)~A (z; B)}.  

The function B) is described below, and B)} denotes the 

regular  value of F(z)~A(Z; B) at z = O. 

If  X ~- [0, c)x x }y near  Y, then the diagonal  in X 2 has the same decomposi t ion  

near  its boundary.  Thus,  if t r  Be -tA denotes the pointwise t race of Be -tA on the 

diagonal,  then near  x = 0, t r  Be -tA is a function of t, x, and y. In tegra t ing  out 

the y variable, we show tha t  if s = t 1/m and v = x/s ,  then f~  tr  Be -tA = k(s, v), 

where k(s, v) is smoo th  for s E [0, ~o) and v C (0, oo). Then,  

/7 1 v:k(o, ,)dv := ,, 

and we show tha t  ~A(Z; B) is a meromorphic  function on C. The  function ~A(Z; B) 

for B = Id was first s tudied by Lesch in [16, See. 2.2] where it was used to define 

the e ta  invariant  of a cone operator ,  which appears  in an index theorem,  see [16, 

Cor. 2.4.7]. Rela ted  index theorems can be found in [9, 7, 4]. 

Our  second main  result (see Theorem 3.1) describes the Schwartz kernel of e - tn 

as a polyhomogeneous  function on a blown-up manifold. Actually,  to simplify 

exposit ion,  we don ' t  define the blown-up manifold,  but  ra ther  we describe the 

kernel of e -tA using coordinates.  Unders tanding  the heat  kernel on a blown-up 

manifold was ini t iated by Melrose [22], and was developed by Mooers  [24] for the 

cone Laplacian.  The  precise descript ion of the heat  kernel can be used to ex t rac t  

analyt ic  proper t ies  of the kernel of the complex powers A ~ of A; see [18]. 

We now discuss various applications.  Our  first appl icat ion is concerned with 

the zeta  function of A. In [18] it is proved that ,  under  certain conditions on 

the resolvent (A - A) -1 ,  the complex power A ~ exists as an entire family of 

b-pseudodifferential  operators .  Using the expansion (1.4) we prove the following. 

THEOREM 1.2 (Zeta Function):  z ~ Tr B A  ~ is defined and holomorphic for 

Rez < m i n { ( - m '  - n) lm,  - /3 /m};  and e.xtends to be meromorphic on the whole 
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complex plane, with (possible) simple poles on the set {zk, ( k -  3) /m I k ~ No}, 

and with (possible) double poles on the set k No, (k-Z)/m ¢ No}. 

Assume that A: xC~H~n(X, E) ~ xa-mL~(X, E) is self-adjoint and positive 

(the number a is the same one that appears in (1.2)). We describe a couple more 

applications that deal with the counting function N(A), the nmnber of eigenvalues 

of A less than A C •, and the spectral function of A: 

e(p,q,A) = ~_, ej(p)( . ,ej(q)), p, q e X, dej = ~jej, 
Ai<A 

where the sum includes multiplicity of the eigenvalue, and where the ej's a r e  

orthonormal. (That A has discrete spectrum follows from [16, Prop. 1.4.7].) 

Let a(p, ~) be the principal symbol of A, and define 

1 f s  tr{a(p'w)-n/m}dpdw' CA -- n(27r) n -X 

where S*X = (T*X \ 0)/R + is the cosphere bundle, and the form dpdw is defined 

by contracting the n-th power of the canonical symplectic form on T*X with the 

radial vector field. Then the trace expansion (1.4) implies the following. 

THEOREM 1.3 (Weyl Asymptotics): As A -+ ~ ,  we have 

(1.8) g ( / ~ )  -- CA/~ n / m  ~- o ( ~ n / m ) .  

The right-hand side can be replaced with O(A (~-l)/m) for the scalar Laplacian 

on a conic manifold; see Kalka M6nikoff [13] and Pham The Lai-Petkov [15]. 

The estimate (1.8) in the generality considered here also follows from Karol' [14]. 

Let ab(p, ~) be the totally characteristic (or b-) principal symbol of x'~A. Here, 

(p, () C bTpX, the b-cotangent bundle, with ( the fiber variable. Let 

1 / tr{ab(p, aJ)-n/m}dbW, 
ca(p)- s;x 

where bS*X = (bT*X \ 0)/R + is the b-cosphere bundle, and where the density 

dbw is defined by contracting the n-th power of the canonical symplectic form on 

bTpX with the radial vector field and then dividing this form by din(p), the fixed 

b-measure on X. Our description of the heat kernel e -tA implies the following. 

THEOREM 1.4 (Asymptotics of the Spectral Function): As A --+ oo, we have 

(1.9) tr e(p,p, A/x m) - CA (p)A n/m = o( A n/m) 
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where x = x(p) is the boundary defining function evaluated at p E X, and where 
the o estimate is uniform for p E X,  including up to the boundary. 

The spectral function (or its Fourier transform) for the scalar cone Laplaeian 

has been investigated by Cheeger Taylor [8], Kalka-M~nikoff [13], Ph.am The 

L.ai Petkov [15], and Melrose Wunsch [23], among others. 

In Section 2, we review a space of parameter-dependent operators that  will be 

used to understand the structure of the resolvent of an elliptic cone operator. 

In Section 3, we use the resolvent structure to analyze the heat operator. In 

particular, in Section 3.1 we describe the polyhomogeneous nature of the heat 

kernel and in Section 3.2 we prove Theorem 1.1. Finally, in Section 4 we prove 

Theorem 1.2, Theorem 1.3, and Theorem 1.4. 

In conclusion, I thank the referee for helpful comments in improving this paper. 

2. T h e  r e s o l v e n t  o f  cone  d i f f e ren t i a l  o p e r a t o r s  

The material  in this section is taken from [19] and [20]. To simplify the exposition, 

we will henceforth assume that  E = C is the trivial bundle. We make this 

simplification so that  definitions and theorems are less cumbersome to state. 

However, there are analogous statements when vector bundles are present. 

We begin by describing flfll-ellipticity. We use the same notation as in the 

introduction. Let A E x - m D i f f ~ ( X )  be a cone differential operator. If A is 

written in the form (1.1) near Y, then we associate to A the operator 

r r t  

I(A) = p-'~ E Am-k(O)(pDp)k" 
k=O 

We denote by bo'm(xmA)(~) the totally characteristic (or b-) principal symbol of 

x'~A; see [22, Sec. 2.4]. The boundary spectrum, specc(A ) c C, consists of points 

T E C where the holomorphic fanfily 

~ f i  A-~-k(0) Tk: H'~(Y) --+ L2(y) 
k=0 

fails to be invertible; see [22, Sec. 5.1]. On the manifold yA = [0, ec)p x Y we 

define the spaces Hce'~(YA), g E No, a E R as follows. Let ;~ E C~([0 ,  oc)) with 

X(p) = 1 near p = 0. Then He~'~(Y A) consists of distributions u on yA such that  

",tu E p~Heb(Y A) and such that,  given any coordinate patch b /on  Y diffeomorphic 

to an open subset o fS  n-1 and function ~ E C ~  (b/), we have ( 1 - \ ) ~ u  E Hc(R '~) 
where (0, oc) × ~ - 1  is identified with R n \ { 0 }  via polar coordinates. 
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Definition 2.1: Let A C C be a closed sector (a closed angle with vertex at 0). 

Then A E x-mDif f~(X)  is ful ly e l l ipt ic  w i th  r e s p e c t  to  a E R on  A if 

(1) bam(xmA)(~) - A is invertible for all ~ ~ 0 and A E A. 

(2) a ~ - Imspecc(A ). 

(3) I(A) - ~ :  H ~ ' o ( Y  A) ) H° '~- '~(Y A) is invertible for all A E A sufficiently 

large. 

Remark 2.2: "Full-ellipticity" is the terminology of Melrose; in the terminology 

of Gil [1t], full-ellipticity is called "parameter-ellipticity". 

If A is fully elliptic with respect to a on a sector A, then Gil [11] proves that 

A - A: x"H~(X)  ) x"-mL~(X) 

is invertible for A E A sufficiently large. Our goal is to obtain precise information 

on the heat operator 

e_,A = f _ A)_ld ~ 

by first obtaining precise information on the kernel of the resolvent. A space of 

parameter-dependent operators that can be used to extract precise information 

on the resolvent was developed in [19]. To explain this program, we start by 

describing their corresponding symbols. Similar symbols can be found in, e.g., 

Grubb-Seeley [12] and Shubin [25]. 

Given m E R and d E Z +, we denote by s~'d(R n) the space of functions 

a E C ~ (A x R" ) satisfying the following estimates: for each a, fl, 

lO~O~3a(A,~)l <_ C(1 + IAI + I¢1) 

The corresponding classical subspace is defined as follows: Given m E 1~ and 

d E Z +, the space ~A,~e~ j consists of those a(A, ~) E Sk~'d(R '~) such that 

(2.1) a(A, ~) --~ Z \ (~ '  ~)am-j(A, ~), 
j=0 

where )t(A,~) E C~(A  × ]R n) with ~((~,~) = 0 near (~,~) = 0 and ~(A,~) = 1 

outside a neighborhood of 0, where am-j (A, ~) is a smooth function of (A, ~) E 

A × R n \ { (0 ,0 )}  such that a m _ j ( S d / ~ , ( ~ )  = 5m-Jam_j()%~) for all 5 > 0, and 

finally, where the asymptotic sum (2.1) means that for each N E Z +, 

N - 1  
m - N , d  n 

a ( A , ~ ) -  E ~t(A,~)am_j(A,~) E S h (R ). 
j=O 
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¢rn ,d {]l~m The symbol a(A,~) E -A,¢e~ ) is said to be holomorphically tempered if 

it is holomorphic on a neighborhood of A and if there exists an e > 0 such 

that each homogeneous component am-j (A, ~) extends to be a smooth function, 

holomorphic in A, for (A, ~) in the region 

{(A,~) • C >  (R n \ { 0 } ) [ A • A  or [A[ <~[~1 d or 1[~[ d_< IAI}. 

We are now ready to define our spaces of parameter-dependent cone operators. 

The Schwartz kernels of these operators are associated with the blown-up mani- 

fold X~, which is "X 2 blown-up along Y x Y". The now fanfiliar picture of X~, 

along with its various submanifolds, is shown in Figure 1. For more on blow-ups 

see [10] or [21]. Let din' denote the b-density dm lifted to X 2 under the right 

projection X 2 ~ (p, q) ~+ q • X, and fix a boundary defining fimction 0 for ft. 

Figure 1. A geometric picture of X~. The submanifold Ab is the 

diagonal of X 2 lifted to X~. 

Let m E R and d c Z +. Then we define ~ d ( x )  as the space of operator 

families Q(A) defined for A E A that have a Schwartz kernel KQ(x) satisfying the 

following two conditions: 

(1) Given ~ c C~(X'~ \ AD), the kernel ~KQ(,\) is of the form k(odA,p)dm ', 
where k(A,p) is a smooth flmction of (A,p) E A × X~, and where k(A,p) 

vanishes to infinite order (that is, with all derivatives) at the sets A × lb 

and A × rb and as IAI -+ oo in A. 

(2) Given a coordinate patch of X 2 overlapping Ab of the form/A u x R~ such 

that Ab ~ H x {0} and given ~ C C ~ ( L / ×  N'~), we have 

I ~2IVQ(Xl = ei:~q(odA, Y,~)d~'dm', d ~ -  (27r)nd~, 

where y ~ q(A,y,~) c C~(bt; SA,ce( ,,)). 
If, in addition, Q(A) is holomorphie on a neighborhood of A, and if its local 

symbols take values in the holomorphically tempered symbols, then Q(A) is called 

holomorphically tempered. 
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Remark  2.3: The space of b-pseudodifferential operators ~ ( X )  is defined in 

the same way except that  in (1), the kernel is of the form k(p)dm ~, where k(p) 
is a smooth function on X~ that  vanishes to infinite order at lb and rb; and in 

(2), the symbol is of tile form q(y, ~), where y ~-+ q(y, ~) E C~(U;  Sc~(]R n)) with 

S ~ ( R  n) denoting the classical symbols on I( '* of order m. 

Before we introduce our next spaces of parameter-dependent operators, we 

review asymptotic  expansions. An index set is a subset F C C × No such that  if 

(z,k) E F,  then (z + f , j )  E F for all ~ C No and 0 < j _< k, and such that  given 

any N E No, {(z, k) E FI Rez < N} is a finite set. Then a smooth flmction a 

on the interior of X has an asymptotic  expansion at Y with index set F if it has 

the property that  given any N E Z +, on a collar [0, e)x × ]~y we have 

(2.2) u(x,y) - xZ(logx)%(, k (y) < c x  N, 
(z,k)EF, Rez<N 

for some functions U(z,k) (Y) on Y. Given any b-differential operator P,  we require 

that  P u  has the same property. For any manifold with corners M, one can define 

an asymptotic  expansion at a boundary hypersurfaee H of M with index set F in 

a similar fashion; see [22, Sec. 5.10] or the appendices of [10] or [21]. Essentially, 

one requires a condition similar to (2.2) to hold in any collar of H. 

Recall that  drn' denotes the b-density dm lifted to X 2 under the right projection 

X 2 ~ (p, q) ~-+ q • X.  Let 5 r = ( F l b ,  Frb, F~, F)  be a set of four index sets. We 
define ).~-°°'d"TZ ( X'l ¢,A j as the class of operator families R(A) depending smoothly on 

A • A that  have a Schwartz kernel/(R(x) satisfying the following two conditions: 

(1) Given p • C ~ ( X ~  \ if), the kernel ~KR(~) is of the form k(A,p)dm',  where 

k(A,p) is a smooth function of (A, p) • A × int(X~) that  vanishes to infinite 

order as I)~1 -+ oc and can be expanded at the sets A x lb and A × rb with 

index sets Fib and Frb respectively. 

(2) Let [0, C)o × fly be a collar of ff in X~ and let ~ • C~([0,  ~)o x fly). Then for 

3, in compact subsets of A, the kernel ~;h'R(~) can be expanded at ~ = 0, 

y • lb, and y • rb with index sets F~, Fib, and Frb respectively. For A 

large, pKR(~) can be written in the form k(r, v, O, y)drn ~, where r = ]A] - l /d ,  

v = 0IA] ~/d, and 0 = ),/]A I. Moreover, k vanishes to infinite order as v --+ co; 

is smooth in 0; and k has expansions at r = 0, v = 0, y • lb, and y • rb 

with index sets F, Fff, F,b, and Frb respectively. 

Our third and final space of operators is defined as follows. Let G = (Glb, Grb) 

be a pair of index sets. Here, lb represents the left boundary Y × X of X 2 and 

rb the right boundary X z Y of X 2. The space ~A°~'G(X) consists of integral 
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operators S(~) that have a Schwartz kernel of the form k()~,p)dm', where k(,~,p) 

is a function on A x X 2 that is smooth in ,~ E A, vanishing to infinite order as 

I,~l -+ oo in A, and can be expanded at the sets A x lb and A x rb with index sets 

Gm and Grb respectively. 

Given any s E R, H~(X) consists of those distributions it such that k~(X)u  C 

L~(X). Then (see e.g. [22]) any A C x-mDif f~(X)  defines a continuous linear 

map 

(2.3) A: x~H~(X) > a '~- '~H~-m(X) for any a, s C R. 

Our main result concerning resolvents is the following. 

THEOREM 2.4 ([19, Th. 6.1]): Let A E :r-mDiffr~(X), m G Z +, be fully elliptic 

with respect to a E ]R on a sector A. Then for A C A sufficiently large, 

A -  A:oeaH~(X)-----+x H b (X) f o r a n y s E R ,  

is invertible, and given B C x-/3Diff~ n' (X) where [3 E I~ and m' E No, we have 

B(A - A)-'  = Q(A) + R(~) + S(~), 

where Q(A) G x ffJc,A (X) is holomorphically tempered, and where R(A) G 

:r" _/~,~-oo,m,~-(~)~~c,A ~ X~) and S(A) C :r-~ l~ A°°'g(~)(X) for some index families 5r(a) 

and ~(~). 

As noted, this result is just [19, Th. 6.1]. Actually, the theorem of loc. cit. was 

established without the factor of B or the holomorphically tempered condition, 

but the proof can be easily modified to accommodate these extra features. The 

index sets 5r(a) and G(c~) are defined as follows; cf. [19, Sec. 3]. The order of a 

pole r E specc(A ) is denoted by ord(r).  We define 

/~+(c~) = {(z + r, k)[ r c No, r = q:iz E specc(A) + inz, 

l _ < k + l _ < E o r d ( r - i r n T i Q ,  a n d R e z > + ( a - m ) } .  
g=0 

For index sets E and F,  we define E@F = E tO F U {(z,k + ~ + 1)[ (z,k) E 

E, (z,f)  C F}. Set E+(a )  = E+((~)U/~+((~). Then, 

(2.4) G(~) = (o,b(a),  o~b(~)) = (E+(~)  + m, ~7-(~)),  

(2.5) f(~)=(g(~),z(~),~o+m), z(~)=z+u(~+(~)+~;-(~))+m. 
Later we will need the following index set: 

(2.6) ~ (~ )  : (E+(~)  + E - ( ~ )  + ,~) u ~(~). 
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3. T h e  h e a t  o p e r a t o r  

Henceforth, we assume that  our sector A is of the form 

(3.1) Assumption: A = {A C C Ieo _< arg(A) _< 27r - ¢0}, where 0 < c0 < 7r/2, 

and we let F denote an anti-clockwise contour in A of the form 

(3.2) F = a + { A E C  I a r g ( A ) = 6 o r  arg(A)=27r-(~},  a < 0 ,  e 0 < 5 < T r / 2 .  

Let A C x- '~Dif f~(X) ,  m E Z +, be fully elliptic with respect to a E R on A. 

Then by Theorem 2.4, (A - A) -1 exists for A E A sufficiently large. Let F be any 

contour in A of the form given in (3.2) such that (A - A) - I  exists on and outside 

of F. Then the heat operator of A is defined by 

e-CA = --2rri f r e_ t~ (A  - A)-ldA, t > 0. 

72~ r 
3.1. THE SCHWARTZ KERNEL. Let B E x-3Diffb (X), fl C R, m' C No. Our 

goal is to describe the Schwartz kernel of Be -cA. To do so, we use Theorem 2.4 

to write B(A  - A) -1 = Q(A) + R(A) + S(A). Hence, 

Be -cA = Q(t) + T(t),  

where 

i e-~Q(A)d~, T(t) = ~ j r  (3.3) Q(t) = ~ e-t~(R(A) + S(A))d~. 

THEOREM 3.1: The following properties hold: 

(A) Let ~ E C ~ ( X ~  ". AD). Then, pKQ(t) is of the form x-ZkQ(t/o'~,p)dm ', 

where kQ(t,p) is a smooth function of (t,p) C [0, oo) x X~ vanishing to 

infinite order at t = O, t --+ oo, p E lb, and p E rb. 

(B) Let ~ E C°°(X~) have support in a coordinate patch l~y x ]~ of X~ over- 

lapping A b s u c h  that A b ~ U X {0}. Then we can write 

~I(Q(c) x-Z f i" t ~)c~ . dm', 

where q C C~([O, oo)t x/dy x R~ ~ ) and has the following properties: 

(a) There exists a constant ~ > 0 such that q(t ,y,~) satisfies the 

estimates: for any k, 7, and a, 

(3.4) ]O~O~O~q(t,y,~)] <_ C(1 + I~])m'+mk-I°le -t'(l+l~lm). 
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(b) If N E Z +, then we can write 

N-1 
q( t ,y , ( )  -~ Z qj(t ,y,~) + rN(t ,y ,~) ,  

j=O 

where qj, r x  E C°°([0, oo)t x U u x R~ ~ ), and satisfy 

(i) qj(3-mt, y ,6()  = 5"~'-Jqj(t,y,() for all ~ > O: 

(ii) qj ( t , y , ( )  satisfies the estimate (3.4) with mk replaced with 

m k -  j and with e -tv(l+[~l'~) replaced with e-tVl~Im; 

(iii) rN satisfies the estimate (3.4) with mk replaced with mk - N 
and with e -t'J(l+l~l~) replaced with e -t'fl~l~. 

(C) Q(t) --+ B continuously in x-/3k~r~ ' (X)  as t --+ O. 

(D) I f t  = s m, then the kernel o fT( t )  is of the form 

Q 
I(.T(t) = X-/3]*:T(8, s ,P)dm' ,  p c  X 2, 

where kr ( s , v ,p )  is smooth in p C Xt 2, except at lb and rb where it has 

expansions with index s e t s  GIb(C~) a//d Grb(O~) respectively; smooth in s E 

[0, oc); and smooth in v E (0, oc), vanishes to infinite order as v ~ ~ ,  and 

can be expanded at v = 0 with the index set E(ct). Here, the index sets 

Glb(O~), Grb(O~), and/~(c~) appear  in (2.4) and (2.6). 

Proo~ We begin wit.h (A). Since Q(A) E :~. ~ . A  (X), by definition of 

this space it follows that  we can write pKO(a) in the form x-3L)'~ko(o'U~,p)dm ~, 

where kQ(A,p) is a smooth function of (~,p) C A x X~ vanishing to infinite order 

at the sets A × lb and A × rb and as I~1 ~ oc in A. It  follows that  

x~9)I£Q(t) = 9~ e-t;~Om[:Q(O"A,p)dA, din'. 

Making the change of variables • -+ L) ... .  A and using the fact that  Q(A) is 

holomorphic so that  the contour o " F  can be shifted back to F, we can write 

i f r  e-(t/o'~)~kQ(A'P)d)~" din' = kQ(t/~",p)dm',  

where 

Since Q(A) is holomorphic oil a neighborhood of A, the contour F can be shifted 

to the right of the imaginary axis. It follows that  kQ(t,p) vanishes exponentially 
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as t --+ oc. The  other  a sympto t i c  propert ies  of kQ (t, p) follow directly from the 

proper t ies  of kQ(,~, p). 

We now consider (B). Here we can write 

x~ ~?KQ(~) = / ei~'~ ~(Q'L~, y, ~)d~ . dm', 

where y ~-~ ~(,~,y,~) • C ~ ( / / ;  ,~'-m.,~ Sh,ce (R n)) .  Following the same line of reason- 

ing used in the proof  of Pa r t  (A) gives 

x/3 ~IfQ(t) = f eiZ~q(t/Q m, y, ~)d~. dm', 

where 

i f r  e-t~(l(k y'~)dA" (3.5) q(t,  y,  ~) = 

Now all the propert ies  of q(t, y, ~) follow from [20, Sec. 5, 6], where we analyzed 

Laplace t ransforms such as (3.5). Moreover,  the analysis in loc. cit. together  with 

Pa r t  (A) prove Pa r t  (C). 

Thus,  we are left to prove (D). We focus on describing the Schwartz kernel 

of T(t) near ft. Near  if, let X 2 ~ [0,c)~ × fly. Now recall t ha t  x~R(.~) + 

~c.A' ' (X) where 9~(a) x~s(A)  • c,A ~. + ( x )  a = 

(6 (a ) ,  E ( a ) ,  No + m)  (this inclusion is s t ra ightforward to verify). Thus,  we can 

write 

S KR(x)+s(x) = k(r, v, f, y)dra',  r = ]/~1-1/rn, V : @l)~] 1/rn, 

where k(r, v, O, y) has expansions at  7" = 0 with index set No + m; a t  v = 0 with 

index s e t / ~ ( a ) ;  at  y • lb with index set Gib(a) ;  at  y • rb with index set Grb(a) ;  

and vanishes to infinite order as v -4 oo. Now by (3.3), with t = s m, we have 

i f r c_ . , .~k ( i .~ l_ l / ,~o l .~ l l /m ,e , y )da ,  dm'. XZI~T(t) -~ 

Thus,  we are left to show tha t  

i fre_S,~k(iAl_l/m, vslAiVm, O,y)da 

satisfies the propert ies  listed in (D). To see this, observe tha t  making  the change 

of variables ,k ~-~ s-'n,k and using the fact t ha t  R(,k) + S(,k) is holomorphic  so 

tha t  the contour  smF can be shifted back to F, we can write 

_,~ i fre_~k(sl~l_Vm vlAll/,~ O, yldA. kT(s, v, y) = s 
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In view of the asymptotic properties of k(r, v, 0, y), utilizing this integral expres- 

sion for kT(S, v, y) it is straightforward to verify that kT(S, v, y) has the asymp- 

totic properties listed in (D). Our proof is now complete. II 

This theorem together with the mapping properties of b-pseudodifferential 

operators give two immediate corollaries. Given Hilbert spaces ?-/1 and 7-/2, 

B(?-/1,7-/2) denotes the bounded linear operators from "/-/1 to ?-/2. Recall that 

H ~ ( X )  is defined as the space of distributions u such that  gJ~(X)u C L2 (X) .  

COROLLARY 3.2: Let  A E x-~Diff~n(X), m E Z +, be fully elliptic with respect 

to a E R on a sector A o f  the form (3.1). Then for any s, s ~ E JR, 

(3.6) e - tA E C~((0 ,  oc)t; B(x~-mH~(X),  x~H~ ' (X))), 

and for each k E No and s E R, down to t = 0 we have 

(3.7) e - tA E Ck([0, cx~)t; B(J" . . . .  H ; ( X ) , x ~ - m - m k H ; - ~ k ( X ) ) ) .  

M o r e o v e r ,  e - t m  ]t=o = Id on x~-"~H~ ( X ) ,  and e - t A  satisfies the heat equation 

(3.8) (at + A)e  - tA = O, t > O. 

Proof." The structure of the heat kernel in Theorem 3.1 along with the mapping 

properties of the "full" calculus of b-pseudodifferential operators (see [21, Th. 

3.25] or [22, Ch. 5]) imply that (3.6) holds. The standard argument shows that 

the heat equation (3.8) is satisfied. 
It remains to prove (3.7). Since ~)tke - t A  = ( - - A ) k e  - t A  by (3.8), it suffices 

to prove (3.7) for k = 0 by the mapping properties of A in (2.3). But the 

k = 0 case follows again from Theorem 3.1 and the mapping properties of b- 

pseudodifferential operators [21], [22]. | 

The following corollary might be interesting for those readers familiar with 

"blow-up'. As always, let t = s "~. Let X H  denote the blown-up space [[0, oo)s x 

X; {s = 0} × Y]. We refer the reader to [10] or [21] for the definition of blow- 

up. Let /~: X H  ~ [0, oo).~ × X be the blow-down map and set bx = /3*(Y); 

t f - -  /3*({s = 0} × Y); and tb = /3*({s = 0} × X). For the definition of the 

polyhomogeneous spaces -4ph9 appearing the following result, see [21]. 

COROLLARY 3.3: Let  A E x- '~Dif f~(X) ,  m E Z +, be fully elliptic with respect 

to a E R on a sector A o f  the form (3.1). Then given any index set F with 

R e F  > ~ - m,, the heat operator defines a continuous linear map  

G r e-~A: A~hg(X) ~ A , h g ( X . ) ,  
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where ~ = (Gbx, G t f , G t b )  = ( G l b ( a ) U ( E ( c t )  -t- F ) ,  F, No). Here, the index sets 

Glb(C~) and E(c~) appear in (2.5). 

Proof: This result follows directly from the structure of the heat kernel in The- 

orem 3.1 and following the proof of [21, Prop. 3.28] that describes the mapping 

properties of the usual "full" b-calculus on polyhomogeneous functions. I 

We now discuss trace expansions of the heat kernel on the diagonal. To start, 

we review residue densities; cf. [26]. Let Q E ~ ( X )  where m E Z. Let Hy × R~ 

be a coordinate patch on X~ overlapping Ab such that Ab ~ H × {0}. Then on 

this coordinate patch, we can write (see Remark 2.3) 

/ eiZ'~q(y, ~)d~. din', KQ 

where q(y, ~) is a classical symbol of order m. Then the Wodzicki residue density 

of Q is by definition 

(3.9) Res(Q) -- f q-n(y,~)d~" din(y), 
I=l 

where q-n(y, ~) is the homogeneous component of q(y,~) of degree - n .  It is a 

remarkable property that  Res(Q) is defined independent of coordinates; see [17]. 

Thus, the local definitions (3.9) produce a global density Res(Q) c C~(X, ~b), 
where Qb is the b-density bundle (i.e., the span of the b-measure din). 

Now let Q(A) c x-Z~'Ad(x) be holomorphically tempered. Then Q(A) is 

holomorphic on a neighborhood of A by definition. Hence, we can define the 

Mellin transform of Q(A) to be the operator 

i fr  )~ZQ()~)d)~' M(Q)(z) = 

where F is the contour (3.2) with the number a in (3.2) now chosen to be a 

(small) positive number, and where Az is defined by its standard branch. 

By computations similar to those in Theorem 3.1 and by using the results of 

[20, Sec. 7], see especially Theorem 7.5 of loc. cit., one can prove that ~4(Q)(z) c 
X-~-dz-d~d+m+d(x). In particular, for z of form ( k - m - n ) / d - 1  where k E No, 

.M(Q)(z) is of order k - n; so its residue density is defined, and 

Res(~4(Q)(g)) c X-Z+m+n-kC~(X, Qb), ~ _ k - m - n d 1. 

The operator O:~4(Q)(z) is an example of an operator with "log-polyhomo- 

geneous" symbols as studied by Lesch [17]; these operators also have well-defined 
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residue densities. Let AJ(Q)(z) = X-~-d~-dQ(z) ,  where Q(z) E ~bd+'~+d(x). 

Then it follows that  O=3d(Q)(z) = - logx~2t4(Q)(z)  + X-/~-dz-dOzQ(z). Thus, 

Res(0z2t4(Q)(f)) for f = (k - m - n ) /d  - 1 where k E No, in general di- 

verges logarithmically at the boundary. However, if f E No, it turns out that  

Res(Ad(Q)(f)) = 0 (this was used in [20, Lem. 6.9]). Thus, when f E No, it 

follows that  

Res(OJt4(Q)(~)) E x -Z+ '~+n-kC~(X ,  ftb), if f E No. 

The next theorem follows fl'om Theorem 3.1, applying the results of [20, Lem. 

6.16]. To avoid reproducing the arguments of loc. cit. we omit the details. 

THEOREM 3.4: Let A E x - m D i f f ~ ( X ) ,  m E Z +, be fully elliptic with respect 

to o~ E R on a sector A of the form (3.1). Then given B E x - ~ D i f f ~ ' ( X ) ,  let 

Be -tA IA denote the Schwartz kernel of Be -tA restricted to the diagonal of X 2. 

Then as t --+ O, we have 

O 0  

(3.1o) Be- AI  ~ 
k=0 

where ~/k E x -Z+m'+~-kC~(X ,  Qb). Moreover, if f = (k - m' - n ) /m ,  then 

F ( - f )  Res(BAe) ( -1 )  e+l 7k - m i f f  ~ No, 7k - f - - - - ~ .  R e s ( B l o g A A  e ) m .  i f f  E No, 

where we define 

(3.11) Res(BA e) = Res(Ad(Q)(e)) and R e s ( B l o g A A  e) = Res(Oz3,t(Q)(Q), 

with Q()~) the holomorphically tempered operator given in Theorem 2.4. The 

asymptotic sum (3.10) means that for any N E Z + we _have 

N--1 

(3.12) Be- tAIA -- E ~/kt(k--m'-n)/m = t (N-m'-n) /mrN(t) ,  

k=0 

where rN(t) is bounded at t = 0 with values in X-Z+m'+'~-Nc°(x ,  12~). 

Note that  the Schwartz kernel gets progressively singular at x = 0 as N gets 

larger. Thus, the asymptotic  sum (3.10) cannot be integrated over X to at ta in 

a trace expansion. The trace of Be -tA will be examined in the next section. 

3.2. T R A C E  EXPANSIONS. Our goal is to prove Theorem 1.1 of the introduction. 

We begin by reviewing the definition of the b-integral; cf. [22, Sec. 4.19]. 
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LEMMA 3.5: Let u(x) E x-/3C~([O, 1)x) where/3 E R. Then for any nonzero 
a E C, the map C ~ z ~-+ f x~:u(x)~f  defines a meromorphic function on C with 

simple poles at z = - ( k  - /~ ) /a ,  where k E No, with residue 1/(ak!)Okx(X~u)(O). 

Proof: Expanding  u in Taylor  series gives u ..~ x -/3 ~k~=oXk/k!i)kx(z~n)(O). 

Since f~ x a z - Z + k ~  = 1/(az - / 3  + k) = a - '  / ( z  + (k - / 3 ) / a )  for Rez sufficiently 

large, our l emma  follows. I 

This  l emma  implies tha t  given u E x - Z C ~ ( X , ~ b ) ,  where /3 E ~, the m a p  

C ~ z ~-~ f x  xZu defines a meromorphic  function on C. The  regular value of this 

m a p  is called the b-integral of u and is denoted by bfu. 

We are now ready to prove Theorem 1.1. Let B E x - Z D i f f ~ ' ( X ) ,  /3 E R, 

m' E No, and let A E x - m D i f f ~ ( X ) ,  m E Z + with m > /3, be fully elliptic with 

respect  to a E R on a sector A of the form (3.1). 

Proof of Theorem 1.1: The  s t ructure  of the Schwartz kernel of Be -tA in 

Theorem 3.1 plus a rguments  similar to those in [22, Sec. 4.18] imply tha t  Be -tA 

is t race class on x ~ - m L ~ ( X )  for t > 0 with trace obta ined by integrat ing the 

Schwartz kernel restr ic ted to the diagonal.  

Assume tha t  B is suppor ted  away from Y. Then  by Theorem 3.4, it follows tha t  

f x  tr  Be -tA can be expanded as in (1.4) but  wi thout  the second sum. Moreover,  

the sanle theorem implies the formula for ak in (1.5), and tha t  the constant  t e rm 

in the expansion is given by (1.7) but  wi thout  the second term. 

We now assume tha t  tr  Be -tA is suppor ted  on a pa tch  [0, c)x x L/y, where Uy is 

a coordinate  pa tch  on Y. We may  assume tha t  d m =  (dx/x)dy  and tha t  0[ab = x 

on this patch.  Now write Be -tA = Q(t) + T(t) ,  where Q(t) and T(t)  are given 

in (3.3). We analyze the t race of each of Q(t) and T(t) .  

Since TrT( t )  is the easiest to analyze, we s ta r t  with TrT( t ) .  By Pa r t  (D) of 

Theorem 3.1, it follows tha t  we can write 

/ x / s , y )dXdy ,  t = s m, Tr T( t )  = x - Z f ( s ,  x 

where f ( s ,  v, y) is smooth  in y; smoo th  in s E [0, c~); and smooth  in v E (0, oo), 

vanishing to infinite order as v --+ ~ ,  and can be expanded at  v = 0 with the 

index set /~(a).  Since R e E ( a )  > m (see the definition of E ( a )  in (2.6)), the 

integral  in x is convergent.  Now changing variables x ~ v = x / s  gives 

f f  .v f f  v  s(,l m v, (3.13) TrT( t )  = s -~ v -  f ( s , v , y ) ~ - d y  = t -~/m y)dVdY'v 
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Since f (s ,v ,y)  is smooth at s = 0, it follows that  T rT( t )  can be expanded 

as in (1.4) but with only the coefficients c~. If /3 = 0, then by (3.13), the 
oo ' d  d't, constant term in Tr T(t) is given by fo fv  f(O, v, y) Y v ; i n  particular, if ~T(Z) = 

1 oo 
p(--) f0 v- f y  f(0,  v, y)dy~,  then by standard facts on the Mellin transform (see 

[1, Ch. 4]), ~T(Z) is a meromorphic function on C such that  

(3.14) Reso{F(Z)~T(Z)} = constant term in TrT( t )  as t -+ 0, 

where Res0 signifies regular value. We will use this fact later. 

Consider now Q(t). Relying on the notation of Theorem 3.1, we can write 

TrQ( t )  =///x-/3q(t/x '~,: , , ,y ,()d(dyd--x r . 

Note that  the variable y plays the role of a parameter.  Thus, in what follows 

we omit the variable y for notational simplicity; at the end of this proof, we just 

need to remember to insert f dy. 
Let M(z) be the Mellin transform of TrQ(t ) .  Then making the change of 

variables t ~-~ tx "~, we can write 

/0 / A~(Z) = I z - 1 T r Q ( t ) d t  = P ( z )  xmZ-3q(z,X) dx, 
X 

where 

1 L ~ t = - l / q ( t , x , ~ ) d ~ d t .  (3.15) q(z, a:) = ~(z) 

By the Mellin inversion formula, we can write TrQ( t )  in terms of M(z):  

1 /c+i~ 
(3.16) TrQ( t )  = ~-~ g c - i ~  t-=M(z)dz' 

where c > >  0. By Cauchy's theorem, the poles of M(z) are responsible for the 

powers of t that  occur in the expansion of TrQ( t )  as t --+ 0; see [1, Ch. 4]. Thus, 

it remains to investigate the poles of M(z). 
In what follows, we denote (j - m' - n) /m by zj for j C No. Then by Lemma 

6.16 and Lemma 7.11 of [20], it follows that  q(z, x) has simple poles whenever 

z = -C where C = z/ ~ No, with residue given by 

(3.17) Reslq(z,X)lz=_e = lxZ+meRes (M(Q) (~ ) ) ,  g = Zj ~ NO. 

Moreover, q(-( ' ,  x) = 0 for ( e No and C ¢ zj for any j ,  and if t = zj E No, then 

(3.18) q ( - g , x )  = -lx~+rneRes(OzAJ(Q)(C)), ~ = zj C No. 
l / t  
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Now, F(z) has only simple poles occurring at z = - ~  where ~ E No with residue 

(-1)e/t~!. Thus, as M(z) = F(z) fxm~x-~q(z,x)~,  by Lemma 3.5 and the 

meromorphic properties of q(z, x) mentioned above, M(z) has poles of order at 

most two occurring only when z is of the form z = - f ,  where for some j E No 

and k E No, we have ~ = zj = (k- /3) /m ~ 1~o or ~ = zj = ( k -  ~)/m E No. The 

second order residues in each case are given by 

and 
( 1 - 1  ~ 

Since ~ + m f  = k, these second order residues of M(z) are 

~a${xkRes(M(Q)(e))}lx=o, ¢ No; if 

(3.19) (_1) ~ 

~iOkx{xkRes(O~A4(Q)(~))}ix=o, if ~ E No. 
m2-~ 

Since TrQ(t) is given by the inverse Mellin transform of M(z) (see (3.16)), by 

Cauchy's theorem and the meromorphic properties of M(z) (which follow from 

the meromorphic properties of F(z), q(z,x), and Lemma 3.5), it follows that  

TrQ(t) has an expansion of the form (1.4). Moreover (see [~, Ch. 4]), sinCe the 
second order residues of M(z) are given by (3.19), the log terms in lh'Q(t) are 

given exactly by (1.6) (after inserting fdy). Also, the formula for aa in (1.5) 

follows from the formulas (3.17) and (3.18). 

We now examine the constant term of TrQ(t) when /3 = 0. Indeed, since 

Tr Q(t) is the inverse Mellin transform of M(z) ,  the constant term is exactly the 

residue of M(z) at z = 0. Since F(z) has a simple pole at z = 0 with residue 

1 and q(z,x) is regular at z = 0 with value --~Res(OzA4(Q)(O)), and since 

M(z) -- fx'~ZF(z)q(z,x)~ -, by Lemma 3.5 the residue of M(z) at z = 0 is 

(3.20) ReslM(z)]:=0 = ~ - 1Res (0~A4(Q) (0 ) )+  1Res°{F(z)q(z'O)}'m 

Let v = x/s where s = t 1/m. Then observe that  

1/o  / ~Q(z) := P(z) v~trQ(t)l'=~/~'~=° v P(z) v~ q(v-m'O'()d~ dV'v 

where trQ(t)i~=~/~,x=O means first set s = x/v in t rQ( t )  and then set x -- 0. By 

standard facts on the Mellin transform (see [1, Ch. 4]), the properties of q(t, x, ~) 
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imply that  ~Q(z) is a meromorphie function on C. In particular, ~A(Z; B) = 
CQ(z) + ~ r ( z )  is a meromorphic fimction on C. Now, changing variables v F-+ 

v -1/m yields 

fo °° f ~)d~ dV l~F(-z /m)q( -z /m '  r(~)~Q(=) = 1 v -=/m q(v,0, = 0), 
?Tt 'V rrt 

where we used the definition of q(z ,x) in  (3.15). Thus, 1Reso{F(z)q(z,O)} = 
Reso{F(z)~Q(z)}. This result, plus (3.20) combined with (3.14), and the fact 

that  ¢A(Z; B) = ~a(z)+ ~T(Z), show that  the constant term in Tr Be -tA as t --+ 0 

is given exactly by (1.7). Our proof is now complete. II 

4 .  A p p l i c a t i o n s  

In this last section, we present applications of Theorem 1.1 and the structure 

theorem of the heat kernel, Theorem 3.1. We begin with the zeta function. We 

now bring back the vector bundle E that  we have been leaving out. 

Let A C x- '~Dif f~(X,E),  m E Z +, be fully elliptic with respect to a E N on 

a sector h of the form (3.1). Suppose that  (A - A) -1 exists on a neighborhood 

of A. Then, in [18] we show that  as a consequence of Theorem 3.1, the complex 

power A-" of A exists and defines an entire family of b-pseudodifferential operators 

satisfying A~A ~ = A ~+~" for z, w E C. Also by [18] it follows that  given any B E 

x - ~ D i f f ~ ' ( X ,  E)where  fl • R with/3 < m, for Rez < m i n { ( - m ' - n ) / m , - f l / m } ,  
the operator BA ~ is trace class on x~-mL~(X, E). 

Proof of Theorem 1.2: Using the well-known formula for the complex powers in 

terms of the heat operator: 

1 t _ z e _ t A  dt Rez < <  0, 
A= - F ( -z~  T '  

we can write 
1 

Tr BA" - F(_z) M ( f ) ( - z ) ,  

where A4(f)(z) is the Mellin transform of the function f(t) = Tr(Be-tA). This 

theorem now follows from the results on the poles of Mellin transforms found in 

[1, Sec. 4.3], using the expansion (1.4) of Tr(Be -tA) as t --+ 0, plus the fact that  

1 / F ( - z )  vanishes for : E No. 1 

Assume now that  A: x~H~(X ,E)  -----+ x~-mL'~(X,E) is self-adjoint and 

positive. We prove Theorem 1.3 and Theorem 1.4. Please see the introduction 

for the notation used in the following proofs. 
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Proof of Theorem 1.3: The leading coefficient of the trace expansion (1.4) (with 

B = Id) in Theorem 1.1 can be verified to be given by 

r(n/m) Xm x Res(An/m)-  r(n/m)m(27r) n L *x tr(a(P'w)-n/m}dpdw' 

where a(p,~) is the principal symbol of A. The Karamata tauberian theorem 

(see [25, p. 122]) applied to the integral Tr e -tA = f o  e-t~dN(A) now completes 

the proof. I 

Proo[ of Theorem 1.4: Let h(t,p)dm(p) = tre -td be the fiber trace of c - t A  

above the point (p,p) on the diagonal. Then, h(t,p) = f o  e-t~dtre(p,P,A) • 
Substituting tx "~ (where x = x(p)) for t, we find that 

// h(tx~,p) = e-t~'da(p,A), o'(p,A):= tre(p,p,A/xm). 

Substituting tx ~ for t in Equation (3.12) of Theorem 3.4 gives 

h(tx TM, p)dm(p) - t-n/~CA (p)dm(p) = t(1-n)/mx 1-nr 1 (t), 

where CA (p)drn(p) = z-nr(n/m)/m Res(A-'~/~), and where rl  (t) is bounded at 

t = 0 with values in x~-lC°(X,  f~b). It is straightforward to verify that 

F (n /m)  f tr{ab(p, w)-n/m}dbW • din(p), cA(p)dm(p)- m(2zr) ~ s ; x  

where ab(p,~) is the b-principal symbol of xmA. It follows that as t ~ O, 

// (4.1) e-tXdcr(p, A) = t-~/~cA(p) + O(t-~/~+l/~),  

where the (9 estimate is uniforln in the topology of C°(X). Applying the Kara- 

mata tauberian theorem now yields the spectral estimate (1.9) of Theorem 1.4. 

Note that since the (_9 estimate on the right-hand side of (4.1) is uniform for 

p E X, it follows from the proof of the Karamata tauberian theorem that the o 

estimate on the right-hand side of (1.9) is also uniform for p E X. | 
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